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INTRODUCTION

The Newton East 7.5-minute quadrangle in Sussex County, New 
Jersey hosts a karst terrain with active and inactive sinkholes, dis-
appearing streams, springs, and caves with passages and cham-
bers. These features occur in carbonates which were deposited in 
a shallow marine environment primarily in the Cambrian and Or-
dovician Periods and as far back as the Mesoproterozoic. Though 
these rocks were deposited up to 1.295 Ga (billion years ago), they 
still play a dynamic role in the health and public safety in the re-
gion. Draining sinkholes and springs exploiting, dissolving, and ex-
panding bedding planes at and below ground surface, and surface 
and groundwater draining into caves, offer unique opportunities for 
unfiltered sources of water and contamination to reach aquifers. 
Furthermore, groundwater flow rates in karst landscapes are much 
greater than in nonkarst landscapes and present an increased risk 
of contamination. This constitutes a unique risk to public drinking 
water systems, private wells, and engineering projects through in-
fastructure instability. Moreover, the continued active development 
of this karst terrain means it is not enough to just know where the 
existing features are, but it is critical to understand where they may 
occur and what geologic settings and formations are most prone 
to further karst development. A knowledge of these karst features 
and where they occur and may occur enables interested and af-
fected parties to make decisions on the risk of geohazards for new 
and existing building construction projects, road and bridge work, 
use of natural resources, and contamination risks. This is especially 
important given increases in urbanization, and even more in New 
Jersey, the most densely populated state in the country. 

This map identifies relationships between mapped karst features 
and the structure of the underlying bedrock geology in the Newton 
East quadrangle. This map, and others in the series of karst feature 
maps currently being developed by the New Jersey Geological and 
Water Survey (NJGWS) are critical tools for state and local gov-
ernments, homebuyers and homeowners, public utilities, private 
consulting companies, and other parties. In northern New Jersey, 
where over fifty sinkhole-related incidents requiring remediation oc-
cur annually, these maps will provide guidance to interested parties 
to address and anticipate these occurrences (State of New Jersey, 
2014). 

The Newton East quadrangle is in the northwestern part of the state 
within both the Valley and Ridge and the Highlands physiographic 
provinces. The Valley and Ridge province underlies the northwest-
ern part of the map area, while the Highlands province underlies the 
southeastern part (fig. 1). This map shows karst features using pre-
vious bedrock and surficial map data and new information gathered 
from field reconnaissance, remote sensing, and aerial imagery. The 
most recent updated mapping in this area includes a bedrock map 
(Monteverde and others, 2022), a surficial map (Witte and Mon-
teverde, 2006), and a karst features map of the adjacent Newton 
West quadrangle (Monteverde and Witte, 2023). 

A summary of the karst topography and an explanation of find-
ings is provided below. A correlation of map units shows the age 
of karst-bearing units in the map area. Rose diagrams (fig. 9) of-
fer orientation data and show a possible correlation between se-
lected structural and karst features, and tables 1 and 2 show the 
distribution of sinkholes by geologic formation and by carbonate 
blocks. Further discussion explores geologic factors controlling the 
distribution of karst features among the formations and carbonate 
blocks. 

KARST SETTING

Carbonate bedrock in the Newton East map area consists primar-
ily of rocks of Cambrian and Ordovician age. These include the 
Cambrian and lower Ordovician rocks of the Kittatinny Supergroup 
—the Leithsville Formation (_l), Allentown Dolomite (_a), and 
the Beekmantown Group, here divided into upper (Obu) and low-
er (Obl) parts, and the Middle Ordovician Jacksonburg Limestone 
(Oj).  Aden and Parrick (2022) have shown that formations com-
posed primarily of non-carbonate units but with some thin interbed-
ded carbonate units and minor carbonate composition can serve as 
settings for significant sinkhole development. For this reason, this 
map includes the lower Cambrian Hardyston Quartzite (_h) with 
carbonate rocks because parts of this unit have been described 
as dolomitic sandstone. The Mesoproterozoic Franklin Marble (Yff/
Yfw) is the only carbonate Proterozoic unit in the map area. 

The map area contains four informally named distinct south-
west-northeast trending carbonate blocks (fig. 2). Three of these—
the Paulins Kill Valley and the Upper and Lower Crooked Swamp 
blocks--continue into the map area from the neighboring Newton 
West quadrangle. The Paulins Kill Valley block is in the northwest-
ernmost corner of the map area and the Upper and Lower Crooked 

Swamp blocks run through the central part and are separated by a 
belt in a synclinal trough of shale of the Martinsburg Formation that 
ends west of the quadrangle. The fourth carbonate block occurs in 
the southeastern portion of the map area and will be referred to as 
the Lake Mohawk block. 

KARST FEATURES

Partially soluble carbonate rocks, such as limestone, dolomite, and 
marble, are more susceptible to weathering because of the slight 
acidity of water interacting with the soil. The dissolution of carbon-
ate rock leads to the development of a karstic landscape often oc-
curring along bedding planes when the rock is exposed to water  
(fig. 3). This also results in visible regional features within the map 
area, where carbonate bedrock forms valleys and more resistant 
bedrock forms ridges. It also results in more localized features such 
as sinkholes.  The karst features observed in this study area include 
sinkholes, as well as caves, closed depressions, and springs.

Three main types of sinkholes occur within the map area (fig. 4). 
They are solution (4a), solution-collapse (4b), and cover-collapse 
sinkholes (4c).  Solution, or dissolution, sinkholes (fig. 5) form at 
the soil-rock interface. Water comes into direct contact with car-
bonate bedrock through bedding planes, joints, and fractures, and 
dissolves carbonate bedrock. The water then transports the weath-
ered material from the source and a small depression forms. This 
depression encourages movement of more water through dissolved 
channels and enlarges fissures in the underlying bedrock (Neuen-
dorf and others, 2011). The depression gradually widens into a fun-
nel shape. Most of the sinkholes and surface depressions in this 
map area demonstrate characteristics of solution sinkholes.

 

The second type of sinkhole, solution-collapse sinkholes (fig. 6), 
sometimes called bedrock-roof collapse sinkholes, occurs when 
the dissolution of bedrock forms voids below the surface. As these 
voids enlarge, there is not enough bedrock support for the area 

above and the surface material collapses into these voids, which 
are sometimes referred to as caves. These types of sinkholes can 
be easy to identify at first because of the steep sides of the sink-
holes, but over time the sides become less steep because of ma-
trerial collapsing in and can appear as solution sinkholes (Dalton, 
2014). These sinkholes can form in tandem with solution sinkholes. 
The dissolution of rock along surfaces can cause one or more sides 
of a depression to become unstable and collapse.

 

The third type of sinkhole, cover-collapse sinkholes, form when co-
hesive materials form a clay layer in the soil above voids in the 
bedrock. Non-cohesive sediments spall into the void or cavity cre-
ated by the dissolution of bedrock. The cohesive clay layer remains 
at the surface while the void gradually migrates upward (Dalton, 
2014). Eventually, the void breaches the surface and results in a 
sudden collapse of sediment into the void and a new sinkhole at 
the surface.

Caves in New Jersey are voids in the subsurface large enough to 
allow for human exploration and are generally oriented along strike 
(Dalton, 2014). The map area contains caves that occur due to 
dissolution of underlying carbonate rocks and due to widening of 
fractures in both soluble and insoluble rocks. These caves are not 
marked on the map but have been included in summaries. Most of 
the caves were previously mapped and are part of an NJGWS bul-
letin and a database maintained by NJGWS (Dalton, 1976). 

Dissolution of carbonate rocks leads to the formation of subsurface 
drainage networks whereby large quantities of water flow through 
fractures and joints, and along bedding planes. Because of these, 
most water in areas defined by karst topography occurs in the sub-
surface, rather than as surface streams (Kochanov and Reese, 
2003). Water moving through these pathways can eventually work 
its way to the surface through other voids in carbonate rock. These 
karst features are known as springs (fig. 7). 

  

 

Much of the carbonate bedrock in Newton East quadrangle is cov-
ered by glacial and postglacial surficial deposits. Late Wisconsinan 
till covers portions of each carbonate block, and late Wisconsinan 
glacial lake deposits overlay much of the Lower and Upper Crook-
ed Swamp blocks, and some of the Lake Mohawk and Paulins Kill 
blocks. Postglacial deposits include alluvium and swamp and bog 
deposits of Holocene and late Wisconsinan age. They typically 
overlie glacial lake deposits and cover much of the Upper Crooked 
Swamp and some of the Paulins Kill blocks. 

There are extensive areas of carbonate bedrock outcrop in the map 
area (fig. 10), and these are interpreted from the topographic map 
and LiDAR imagery. Locally, these areas are overlain by till and 
glacial meltwater deposits, notably in the area around the Lake 
Mohawk block and the nothern part of the Upper Crooked Swamp 
block.

MAPPING METHODS

Initial investigation into areas where sinkholes may occur includ-
ed identifying areas underlain by carbonate rock. Once these ar-
eas were designated, LiDAR and aerial imagery, both recent and 
historic, were used to locate areas with outcropping bedrock and 
closed depressions. Particular attention was paid to areas of the 
Newton East quadrangle with less than 75 feet of unconsolidated 
cover (fig. 1). Closed depressions visible on LiDAR imagery (fig. 8) 
and potential karst features that appeared on aerial imagery were 
marked and field checked. In some cases, field checking showed 
these areas to be the result of non-karst processes like construction 
activity, subsidence of backfilled sites, abandoned mines, culverts, 
and fallen trees. These areas are not marked on the map. Features 
that were determined to be the result of karst activity are located on 
the map. Wherever possible, at each karst site measurements were 
taken to determine physical properties of each sinkhole—length, 
width, and depth—and which direction the long axis of the sinkhole 
was trending, if any trend was distinguishable. This was measured 
to compare and look for possible correlations with trends in bed-
ding, joint, and cleavage planes. Farm fields provided a significant 
setting for recent sinkhole activity. Sinkholes that appeared over the 
winter and before spring plowing indicate active sinkhole formation 
at the surface. The difficulty in capturing this data lies in locating 
these sinkholes before they are filled in at the start of the farming 
season. In some cases, it was not possible to field check suspected 
karst sites, due to inaccessibility or sites that have been remediat-
ed. 

Springs were located in the field and by using the springs database 
available from the NJGWS (Pallis and others, 2022). 

  

RESULTS

In total, over 100 field-verified karst depressions were located and 
appear on this map. Few karst features occur in areas with a surfi-
cial cover greater than 75 feet. 

Figure 9 offers a summary of measurements of the direction of the 
long axis of karst features with distinguishable trends (9a)  and a 
comparison between these measurements and measurements of 
bedding planes (9b), cleavage planes (9c), and joint planes (9d) 
from carbonate rock in the map area. The average trend of mea-
sured sinkholes in the map area is N46E +/- 3.2o. This appears 
upon initial investigation to correlate with bedding of carbonate bed-
rock in the map area, which has an average trend of N42E +/- 3.6o. 
This matches the established tendency of caves in New Jersey to 
generally occur along strike.

One factor that plays a large role in karst susceptibility is the sig-
nificance that depth to bedrock plays in the development of karst 
features (Tipping and others, 2001). Green and others (2002) es-
tablished that areas of bedrock outcrop and areas with minimal 
sediment cover are most conducive to karstification. In their study 
of karst hydrogeomorphic units, they found that in areas with rela-
tively thin layers of unconsolidated cover—those being areas with 
less than 75 feet of unconsolidated material—surface karst features 
may begin to appear, while areas with more than 75 feet of cover 
did not host karst features. The factors affect the karst landscape 
in the Newton East quadrangle. Figure 10 shows the distribution of 
bedrock outcrop. When comparing these with karst features on the 
map, it is evident that most occur in and near areas of extensive 
bedrock outcrop. 

Table 1 shows a summary of the occurrence of karst features within 
each carbonate block. The total percentage of carbonate bedrock 
for each block is compared to the total percentage of karst features 
occurring within each block. From this summary, it is apparent that 
the Paulins Kill Valley block contains more than three times the per-
centage of karst features as it does the percentage of carbonate 
bedrock, while the Lake Mohawk block contains less than a quarter 
of the percentage of karst features (3.66%) as it does the percent-
age of carbonate bedrock (15.18%).  In areas with significant surfi-
cial cover, especially greater than 75-100 feet, there is not enough 
groundwater recharge to dissolve cracks in bedding planes, cleav-
age planes, and joint planes (Tipping and others, 2001). So, while 
sinkholes may be covered by glacial sediment, the glacial sediment 
in these parts of the map area also actively discourages karst de-
velopment. The contours showing the thickness of surficial mate-
rials further demonstrates this (fig. 1). In areas where the surficial 
materials are less than 75 feet thick, sinkholes are more common. 
However, where there is significant cover, less sinkholes have been 
located. Outcropping bedrock occurs within a significant portion of 
the Paulins Kill Valley block and most of the karst features identified 
in this block occur in the outcropping bedrock. The Lake Mohawk 
block contains till and glacial lake deposits over a significant portion 
of the total area. This is one reason for the underrepresentation of 
karst features in this block, as the surficial deposits have covered 
the karst features and have also impeded the development of new 
karst features. 

The proportion of sinkholes in the Upper and Lower Crooked Swamp 
blocks is more similar to the proportion of carbonate outcrop area 
than it is in the Paulins Kill and Lake Mohawk blocks. Both contain 
late Wisconsinan till and the Lower Crooked Swamp block contains 
late Wisconsinan glacial lake deposits, while the Upper Crooked 
Swamp block contains postglacial swamp and bog deposits that 
overlie glacial deposits. However, these blocks also contain large 
areas of outcropping bedrock that account for most of the karst fea-
tures present in each block. 

In addition to thickness of surficial cover, it has been shown in pre-
vious studies that larger and a greater number of sinkholes tend 
to form in areas with greater surface runoff. Poorly drained envi-
ronments with ponding of surface water enable sedimentation and 
temporary plugging of sinkholes. As a result, sinkholes in these ar-
eas remain small and form at a slower rate. Alternately, well-drained 
environments rarely lead to ponding and sinkholes continue to de-
velop and grow larger (Panno and others, 2008). Thus, lakes and 
large swamps and marshes (like the Newton Meadows along the 
Paulins Kill northeast of Newton) will inhibit sinkhole development. 

Table 2 provides a summary of karst-bearing formations in the 
Newton East quadrangle. The Allentown Dolomite contains 59 karst 
features—the most of any formation in the map area. This is not 
surprising given the Allentown Dolomite comprises the highest per-
centage of carbonate bedrock. However, while the Allentown Do-
lomite covers just over 50% of all carbonate bedrock area on the 
map, it contains more than 58% of karst features. The larger per-
centage of total karst features versus total carbonate area comes 
largely at the expense of the Leithsville Formation, which compris-
es over 11% of the carbonate bedrock but contains only one located 
karst feature.  In this map area, flatter, low-lying areas may have 
impeded sinkhole development in the Leithsville Formation through 
ponding and, as a result, many of the karst features are too small to 
identify or have been plugged by sediment. In tandem with this, an-
other reason for the greater representation of some formations over 
others is the location of the formations relative to bordering gneiss 
and shale uplands. In Kittatinny Valley State Park, many of the karst 
features occur in the upper and lower Beekmantown, which bor-

der shales of both the Bushkill and the Ramseyburg Members of 
the Ordovician Martinsburg Formation. Likewise, many sinkholes 
were located in the Allentown Dolomite in Kittatinny Valley State 
Park. Studies in New Jersey have shown groundwater in gneiss 
bedrockwith pH values as low as 5.7 and groundwater in shale bed-
rock with pH values 6.7 to 7.0, whereas carbonate groundwater has 
had pH values recorded up to 7.5 (Miller, 1974). The Leithsville in 
the Kittantinny Valley State Park area and north to Monroe is bor-
dered by gneiss to the east. Although few sinkholes are observed 
in the Leithsville here because of thick surficial cover and lakes, the 
low elevation of this Leithsville belt is likely the result of enhanced 
solution by runoff from the gneiss. Similar karst features occur to 
a lesser degree in the Paulins Kill Valley block in the northwestern 
part of the map area, where the Upper and Lower Beekmantown 
and Allentown Dolomite border shale uplands of the Martinsburg 
Formation.    

  

 

 

DESCRIPTION OF MAP UNITS
(Monteverde and others, 2022)

PALEOZOIC VALLEY AND RIDGE

Jacksonburg Limestone (Middle Ordovician) (Kummel, 1908, 
Miller, 1937) — Medium-dark-gray-weathering, medium-dark to 
dark-gray, laminated to thin-bedded, argillaceous limestone (ce-
ment-rock facies) and minor arenaceous limestone. Grades down-
ward into medium-bluish-gray-weathering, dark-gray, very thin- to 
medium-bedded, commonly fossiliferous, interbedded fine- and 
medium-grained limestone and pebble-and-fossil limestone con-
glomerate (cement-limestone facies). Thickness ranges from 150 
to 1,000 feet regionally.

Beekmantown Group (Clarke and Schuchert, 1899)

Beekmantown Group, upper part (Lower Ordovician) – Light- 
to medium-gray- to yellowish-gray-weathering aphanitic to medi-
um-grained, thin- to thick-bedded, locally laminated, slightly fetid 
dolomite. Locally light-gray- to light-bluish-gray-weathering, medi-
um- to dark-gray, fine-grained, medium-bedded limestone occurs 
near the top of unit.  Contains pods, lenses and layers of dark-gray 
to black rugose chert. Thickness averages 200 feet, but locally as 
much as 800 feet.

Beekmantown Group, lower part (Lower Ordovician) – Upper se-
quence is light- to medium-gray- to dark-yellowish-orange-weather-
ing, light-olive-gray to dark-gray, fine- to medium-grained, very thin- 
to medium-bedded locally laminated dolomite. Middle sequence is 
olive-gray- to light-brown- and dark-yellowish-orange-weathering, 
medium- to dark-gray, aphanitic to medium-grained, thin-bedded, 
locally well laminated dolomite which grades into discontinuous 
lenses of light-gray- to light-bluish-gray-weathering, medium- to 
dark-gray, fine-grained, thin- to medium-bedded limestone. Lime-
stone has “reticulate” mottling characterized by anastomosing light-
olive-gray- to grayish-orange-weathering, silty dolomite laminae 
surrounding lenses of limestone. Locally, limestone may be com-
pletely dolomitized. Grades downward into medium dark- to dark-
gray, fine-grained, well laminated dolomite having local pods and 
lenses of black to white chert. Lower sequence consists of medium- 
to medium-dark-gray, aphanitic to coarse-grained, thinly-laminated 
to thick-bedded, slightly fetid dolomite having quartz-sand laminae 
and sparse, very thin to thin, black chert beds. Individual bed thick-
ness decreases and floating quartz sand content increases toward 
lower gradational contact. Entire unit is Stonehenge Limestone of 
Drake and others (1985) and Stonehenge Formation of Volkert and 
others (1989). Markewicz and Dalton (1977) correlate upper and 
middle sequences as Epler Formation and lower sequence as Rick-
enbach Formation. Unit is about 600 feet thick.

Allentown Dolomite (upper Cambrian) (Wherry, 1909) – Very 
light-gray- to medium-gray-weathering, light to medium-light- to 
dark-gray, fine- to medium-grained, locally coarse-grained dolomite 
and shaly dolomite. Floating quartz sand and two series of medi-
um-light- to very light-gray, medium-grained, thin-bedded quartz-
ite and discontinuous dark-gray chert lenses occur directly below 
upper contact. Weathered exposures characterized by alternating 
light- and dark-gray beds. Ripple marks, oolites, algal stromatolites, 
cross-beds, edgewise conglomerate, mud cracks, and paleosol 
zones occur throughout but are more abundant in lower sequence. 
Lower contact gradational into Leithsville Formation.  Approximate-
ly 1,800 feet thick regionally.

Leithsville Formation (middle to lower Cambrian) (Wherry, 
1909) – Light to dark grey, greyish red, and dark greenish grey 
weathering. Aphanitic to fine-grained, thin- to thick-bedded dolo-
mite, argillaceous dolomite, dolomitic shale, quartz sandstone, silt-
stone, and shale. Quartz-sand lenses occur near lower gradational 
contact with Hardyston Quartzite. Archaeocyathids of early Cam-
brian age are present in formation at Franklin, New Jersey, sug-
gesting an intraformational disconformity between middle and early 
Cambrian time (Palmer and Rozanov, 1967). Unit also contains Hy-
olithellus micans (Offield, 1967; Markewicz, 1968). Approximately 
800 feet thick regionally.

Hardyston Quartzite (lower Cambrian) (Wolff and Brooks, 
1898) – Medium- to light-gray, fine- to coarse-grained, medium- to 
thick-bedded quartzite, arkosic sandstone and dolomitic sandstone.  
Thickness ranges from 0 ft. to a maximum of 100 feet regionally. 

PROTEROZOIC NEW JERSEY HIGHLANDS

Franklin Marble (Mesoproterozoic) – White- to light-gray-weath-
ering, white or light gray, fine- to coarse-crystalline, calcitic to lo-
cally dolomitic marble containing calcite, graphite, phlogopite, 
chondrodite, and clinopyroxene. Separated into two lower Franklin 
marble bands (Yff) and an upper Wildcat marble band (Yfw) (Hague 
and others, 1956). 

Other rocks

Undifferentiated non-carbonate rocks – Paleozoic sedimentary 
rocks, including shale, sandstone, siltstone, and pebble conglomer-
ate; Silurian alkalic dikes; Proterozoic conglomerate and sandstone; 
Proterozoic intrusive igneous rocks, including granite, alaskite, and 
monzonite; Proterozoic gneiss and amphibolite.
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              EXPLANATION OF MAP SYMBOLS
                                                             
                                  LINE FEATURES
   
Contact -  Dotted where location is concealed.

                                POINT FEATURES

Locations of sinkholes and depressions suggested to be formed by karstifica-
tion. Identified using LiDAR, air photos and field investigations.

Locations of springs.

Location of photos used as figures.

ORDOVICIAN

CAMBRIAN

Kittatinny Valley Sequence

 

NEW JERSEY HIGHLANDS PROTEROZOIC

Oj

CORRELATION OF MAP UNITS

Obl
Obu

_a

VALLEY AND RIDGE

Yff/Yfw

_l
_h

Unconformity

Unconformity

O_Yu

Figure 3. Dissolution of 
carbonate bedrock along a 
joint plane in the Allentown 
Dolomite in Kittatinny Valley 
State Park. Rock hammer 
for scale. Star in white box 
shows location in quadran-
gle. Photo by Z. Schagrin. 

Figure 6. Andover Pit solution-collapse sinkhole in Kittatinny Valley 
State Park. It is possible this sinkhole originally began as a cave 
and eventually the roof of the cave became unstable and collapsed 
into the void. Bedrock dissolution around this sinkhole continues, 
and the sinkhole is still enlarging. Expansion is in the southwest 
direction. Tire for scale. Star in white box shows location in quad-
rangle. Photo by Z. Schagrin. 
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Figure 2. Map of the four carbonate blocks occurring within the 
Newton East quadrangle. 

Figure 8. LiDAR imagery with hillshade of a part of the Newton 
East quadrangle in Kittatinny Valley State Park showing closed 
topographic depressions. These depressions were field checked 
to confirm that they are karst related. The large closed depression 
in the center of the image is the Andover Pit solution-collapse sink-
hole (fig. 6). Star in white box shows location in quadrangle. 
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Figure 10. Bedrock outcrop in the Newton East quadrangle related 
to the four carbonate blocks. From Stone and others (2002) and 
Witte and Monteverde (2006). Brown polygons are bedrock out-
crop. Black dots are sinkholes and red dots are springs. 

Figure 5. Solution sinkhole 
occurring in a meadow. This 
sinkhole became visible af-
ter a prescribed burn in the 
area cleared vegetation ob-
scuring the feature. Rock 
hammer for scale. Star in 
white box shows location 
in quadrangle. Photo by Z. 
Schagrin. 

Figure 7. Spring in the southwestern part of the map area. This 
spring flows out of the Allentown Dolomite (_a) and into Lake Iliff. 
There is a small pond northwest of the spring, perpendicular to 
strike, which could be a possible source. Spring is approximately 
35 feet long by 15 feet wide. Star in white box shows location in 
quadrangle. Photo by Z. Schagrin. 
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Figure 1. Map of thickness of surficial materials in the Newton East quadrangle over a hillshade base (State of New Jersey, 2018). The thickest surfi-
cial materials include late Wisonsinan till and glacial lake deposits along the border of the Valley and Ridge and Highlands physiographic provinces. 
Other surficial materials include postglacial deposits consisting of alluvium and swamp and bog deposits. Black dots are sinkholes and red dots are 
springs. Thickness map from Stanford and others (2007) based on Witte and Monteverde (2006). 

Thickness of surficial materials

Carbonate 
Block

Percent of Total
Carbonate Area

Total Karst 
Features

Percent of 
Total Karst
Features

Paulins Kill 
Valley

Upper Crooked 
Swamp

Lower Crooked 
Swamp

Lake 
Mohawk

1.59%

37.76%

45.47%

15.18%

6

36

3.66%4

54.46%

35.64%

5.94%
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Table 1. Table showing the percentage of carbonate area, total 
number of karst features, and percentage of total karst features for 
each carbonate block in the map area.

Formation Number of 
Sinkholes

Percent of Car-
bonate Area

Allentown 
Dolomite

Beekmantown 
Group,

upper part

Jacksonburg 
Limestone

Leithsville 
Formation

Beekmantown
Group, lower part

Franklin Marble

1

7

31

59

1

1

0.99%

6.93%

30.69%

58.42%

0.99%

0.99%

3.17%

5.37%

25.56%

50.48%

11.48%

4.46%

Percent of Total 
Sinkholes

Table 2. Table showing the total number of sinkholes, percentage of 
total sinkholes, and percentage of carbonate area for each geologic 
unit in the map area.

Figure 4. Diagrams showing a solution sinkhole (4a), a solution-collapse sinkhole (4b) and a cover-collapse sinkhole (4c). Diagrams 
from Dalton (2014). 
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Figure 9. Rose diagrams showing the trend of the long axis of 
measured sinkholes in carbonate rocks (9a) and the dip direction 
of bedding planes (9b), cleavage planes (9c), and joint planes (9d) 
within carbonate rocks. n equals the number of measurements 
taken for each plot. Data from Monteverde and others (2022).

Figure 9a
n=60

Figure 9b
n=536

Figure 9c
n=60

Figure 9d
n=200

Oj

Obu

Obl

_a

_l

_h

Yff/Yfw

O_Yu


